天文望远镜原理是什么?折射望远镜、反射望远镜、折反射望远镜的区别?

天文望远镜原理是什么?

天文望远镜原理是什么?折射望远镜、反射望远镜、折反射望远镜的区别?

望远镜是一种利用凹透镜和凸透镜制作而成的光学仪器,主要用于观察远距离目标物体的特征和情况。望远镜是利用光线透过凹透镜形成的小孔成像原理制成的,它可以将距离很远的物体景象放大,然人们清楚的观察到它的具体形态,对物体更小的细节和阴影都观察的更加清楚和仔细,所以在古代人们也将其成为“千里眼”。1609年意大利的佛罗伦萨人伽利略·伽利雷在望远镜原有的基础上,发明出了功能增强40倍的双镜望远镜,并将其投用于天文科学研究,这是历史上第一部应用于科学研究的实用望远镜。由于这种望远镜功效的大大增加,使人们可以观测到天空中人体肉眼无法看清和分辨的事物体,所以这种望远镜慢慢地就演变成为天文观测工作中必不可少的工具。

随着时代的变迁,望远镜的功效和应用途径也发生了很大的变化,人们根据这些天文望远镜不同的使用功效,将其分为折射望远镜、反射望远镜和折反射望远镜。望远镜的用途也由单一变成多样的使用性,广泛应用于军事、高科技生物研究等方面。

折射望远镜、反射望远镜、折反射望远镜的区别?

折射望远镜

用透镜作物镜的望远镜被称为折射望远镜,在历史的演变中,用凹透镜作目镜制成的望远镜被称为伽利略望远镜;用凸透镜作目镜制成的望远镜则被称为开普勒望远镜。因为单透镜物的镜色差和球差都相当严重,所以现代的折射望远镜都是用两块或两块以上的透镜组作物镜制成的。其中以双透镜物制成的望远镜应用的最普遍和广泛,这种望远镜是由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜相叠在一起组成,这两种透物镜相结合后,可以完全消除透出的景物波长,对得出的景物位置色差也可以相对的减弱。

双透物镜的体积和视野范围都比较小。双透镜物镜的相对口径较小,一般都在1/15~1/20之间,很少大于1/7,可用视场也不大。人们将口径小于8厘米的双透镜物镜可将两块透镜胶合在一起的望远镜称为双胶合物镜;要增加相对口径和视场的使用,可以采用多透镜物镜组。

伽利略望远镜具有结构简单、光能损失少、镜筒短、携带轻便、视野成像比较正的良好特点,但是它的事物扩展倍数小,观察视野面小,一般都是充当观看近距离的观剧镜和玩具望远镜。在使用开普勒望远镜时,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的景物是正像。但是开普勒望远镜采用的是前宽后窄的双筒结构,这种结构可以组成双直角棱镜正像系统,这套系统可以在纠正原有望远镜结构中,形成的倒立成像系统;同时还可以将望远镜的体积和重量,在很大限度上减小。其缺点就是透镜正像系统需要采用一组复杂的透镜来将成像像倒转,这样做成本比较的高。但是由俄罗斯人发明的20×50三节伸缩古典型单筒望远镜就大大的避免了这项情况的出现,它是采用精良的透镜正像设计系统来进行事物成像的。

现代人们用的折射望远镜一般都是采用开普勒结构。由于折射望远镜的成像质量比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,所以大口径望远镜都采用反射式。

天文望远镜原理是什么?折射望远镜、反射望远镜、折反射望远镜的区别?

历史

1611年,德国天文学家开普勒首次用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,因此后人将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得更好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。此后,天文学家一直想研制出更长的望远镜,但最后几乎都以失败而告终。

1757年,杜隆经过对玻璃和水的折射与色散现象的研究,为消色差理论奠定了基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但由于当时科技发展的局限性,很难铸造出较大的火石玻璃。最初研究消色差望远镜时,人们能磨制成的最大的透镜只有10厘米。

19世纪末,由于制造技术有了很大的进步,随之出现的就是制造大口径的折射望远镜的科学热潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

折射望远镜最适合用来做测量天体方面的工作,因为其焦距长,底片比例尺大,对镜筒弯曲不敏感。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜。同时,在重力作用下,大尺寸的透镜变形会很严重,因而丧失敏锐的焦点。

反射望远镜

用凹面反射镜作为物镜的望远镜就就是反射望远镜。可分为牛顿望远镜、卡塞格林望远镜等几种类型。反射望远镜的主要优点是不存在色差,当物镜采用抛物面时,还可消去球差。但为了减小其他像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000~9000埃波段范围的反射率都大于80%,因而除光学波段外,红外和紫外等不可见光波段也可以用反射望远镜来研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5~1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,而且主镜只有一个表面需要加工,从而大大降低望远镜造价和制造的困难。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。目前口径在1.34米之上的光学望远镜除了有反射望远镜外就再也找不到其他的了。发射望远镜的主要科研使命就是研究天体的物理特征。

天文望远镜原理是什么?折射望远镜、反射望远镜、折反射望远镜的区别?

历史

1668年诞生了世界上第一架反射式望远镜。牛顿曾经好几次磨制非球面透镜,但屡遭失败,因此他改用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。虽然球面镜会产生一定的象差,但反射镜代替折射镜却是科学上一个成功的转折。

1663年,詹姆斯·格雷戈里在提出一种方案:分别用凹面镜作为一面主镜和副镜,把副镜放在主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜。他提出的这个建议在理论上是正确的,但是,由于当时制造水平的局限性,它所提到的一些要求是无法实现的,因此,格雷戈里无法得到对他有用的镜子。

1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。

卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。

赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。

1918年末,海尔主持建造的胡克望远镜投入使用,它的口径是254厘米。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,值得骄傲的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。

20世纪,20~30年底,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米的望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:“海尔望远镜就像半个世纪以前的叶凯士望远镜一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了”。后来,1976年前苏联建造了一架600厘米的望远镜,而他所发挥的作用还不如海尔望远镜,再次使阿西摩夫的话得到了验证。

天文望远镜原理是什么?折射望远镜、反射望远镜、折反射望远镜的区别?

反射式望远镜有许多优点,例如它没有色差,能在广泛的可见光范围内记录天体情况的各种信息,与折射望远镜相比,更容易制作。但同时它本身也有很多不足之处,口径大的话,视场会比较小,得到的图像资料的清晰度和亮度不是很高,而且折射镜的物镜需要定期镀膜等。

第二次世界大战后,反射式望远镜在天文观测中得到很快的发展,1950年在帕洛玛山上安装了一台直径5.08米的海尔反射式望远镜。1969年在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,美国航空航天局(NASA)将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。哈勃望远镜拍摄图片时不受地球大气层的影响,因此它拍出来的图片要比地球上同类望远镜的清晰度高10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001设在智利的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。现在,一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“加利福尼亚极大望远镜”(California·ExtremelyLarge·Telescope,简称CELT),20米口径的大麦哲伦望远镜(Giant·Magellan·Telescope,简称GMT)和100米口径的绝大望远镜(Overwhelming·Large·Telescope,简称OWL)。科学家们指出,研制的这批新的望远镜,不仅能拍出比哈勃太空图片像质更好的图片资料,还能收集更多的光。更加清晰可靠的太空图像资料能使人更了解100亿年前星系形成时初态恒星和宇宙气体的情况,并观测清楚遥远恒星周围的行星。

折反射望远镜

折反射望远镜中的球面反射镜用来成像,而折射镜则能用来校正像差,同时,可以避免困难的大型非球面加工,又能获得良好的像质量。用的比较广泛的有施密特望远镜。它在球面反射镜的球心位置处放置一施密特校正板。它的一个面是平面而另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。

还有一种马克苏托夫望远镜,在球面反射镜前面加一个弯月形透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差。及这两种望远镜的衍生型,如超施密特望远镜,贝克―努恩照相机等。折反射望远镜的特点是相对口径很大,甚至能大于1,光力强,视场广阔,像质优良。适于巡天摄影和观测星云、彗星、流星等天体,折反射望远镜的反射镜有副镜的保护,不易被灰尘等污染物侵袭。

历史

世界上第一台折反射式望远镜的出现于1814年。

1931年,德国光学家施密特用一块类似于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,对暗弱星云的拍照效果非常突出。如今施密特望远镜是天文观测的重要工具。

1940年马克苏托夫又制作出了一种新型的折发射望远镜。马克苏托夫用一个弯月形状透镜作为改正透镜,使它的两个表面变成两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,清晰度和亮度比较小,但放大的倍数比较大,同时对玻璃的要求也高一些。

折发射式望远镜分别吸收了折射和反射望远镜的优点,因此很适合业余天文观测,也是广大天文爱好者最佳的选择。

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2245678901@qq.com 举报,一经查实,本站将立刻删除。

给TA打赏
共{{data.count}}人
人已打赏
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索
打开微信,扫描左侧二维码,关注【kekeketangcom】,发送【101】获取验证码,输入获取到的验证码即可解锁复制功能,解锁之后可复制网站任意一篇文章,验证码每月更新一次。
提交
隐私政策 关于我们 联系我们