判断级数敛散性的方法 怎样可以判断级数是否收敛

  判断级数敛散性的方法 怎样可以判断级数是否收敛

  1、先判断这是正项级数还是交错级数;

  2、判定正项级数的敛散性:先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则用比值判别法或根值判别法进行判别,如果两判别法均失效,则再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等;

  3、判定交错级数的敛散性:利用莱布尼茨判别法进行分析判定;利用绝对级数与原级数之间的关系进行判定;一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散;有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定;

  4、求幂级数的收敛半径、收敛区间和收敛域。若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域;对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径;

  5、求幂级数的和函数与数项级数的和:求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和;求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值;

  6、将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2245678901@qq.com 举报,一经查实,本站将立刻删除。

给TA打赏
共{{data.count}}人
人已打赏
知识分享

重阳节诗句有哪些?九月九日重阳节的意义是什么?

2025-10-8 20:55:52

知识分享

俄国十月革命对中国的影响 十月革命给中国带来什么影响

2025-1-15 11:34:14

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索
打开微信,扫描左侧二维码,关注【kekeketangcom】,发送【101】获取验证码,输入获取到的验证码即可解锁复制功能,解锁之后可复制网站任意一篇文章,验证码每月更新一次。
提交
隐私政策 关于我们 联系我们