换元积分法技巧 不定积分换元积分法技巧

  换元积分法技巧 不定积分换元积分法技巧

  主要通过引进中间变量作变量替换使原式简易,从而来求较复杂的不定积分。它是由链式法则和微积分基本定理推导而来的。换元积分法(Integration By Substitution)是求积分的一种方法。

  换元积分法技巧 不定积分换元积分法技巧

  换元法=代换法=substitution积分的过程:

  就是按照最基本的五个积分公式(代数一个、指数一个、对数一个、三角两个),三种基本方法(代换法、分部积分法、有理分式法),再灵活结合三个求导法则(乘法法则、除法法则、复合函数求导法则=链式求导),将所有的被积函数(integrand)与积分变量(variable)找到符合基本积分公式的对应关系。积分的技巧:这个对应关系必须由解题人去寻找,只要找到积分的对应关系(Corresponding relation),积分就迎刃而解了。换元法就是一种主要的方法。笼统来说:换元法、分部法、分式法是三种最主要的积分技巧。

  换元积分法技巧 不定积分换元积分法技巧

  主要就是把根号里的未知量用参数代替,比如:被积函数中含有根号(a2—x2),则令x=asint;若被积函数中含有根号(a2+x2),则令x=atant例题:1、∫1/(1-x)√1-x2令x=sint,则dx=costdt,(-π/2<t<π/2),∴原式=∫cost/(1-sint)cost=∫1/(1-sint)dt=∫(1+sint)/(1-sint)(1+sint)dt=∫sec2tdt+∫secttantdt=tant+sect+c=x+1/√1-x2难题2、∫√x2-9/xdx令x=3sect,则dx=3sectttantdt,∴原式=3∫tan2tdt=3tant-3t+c=√x2-9-3arccos3/x+c。

  换元积分法技巧 不定积分换元积分法技巧

  换元积分法是求积分的一种方法。它是由链式法则和微积分基本定理推导而来的。在计算函数导数时,复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 2245678901@qq.com 举报,一经查实,本站将立刻删除。

给TA打赏
共{{data.count}}人
人已打赏
知识分享

史记选陈涉世家翻译 史记选陈涉世家文言文翻译

2025-7-10 10:39:15

知识分享

浪淘沙原文 浪淘沙原文朗读

2025-7-10 10:45:17

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索
打开微信,扫描左侧二维码,关注【kekeketangcom】,发送【101】获取验证码,输入获取到的验证码即可解锁复制功能,解锁之后可复制网站任意一篇文章,验证码每月更新一次。
提交
隐私政策 关于我们 联系我们